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ABSTRACT 
Pointing  jitter refers to  camera  motion  occurring  during  an  image  exposure of specified 
duration.  Jitter  acts  to  smear  optical images and  degrade  the  quality of pictures  taken 
by scientific instruments. As such it is an  important  measure of a controller’s effective- 
ness, and  an  important  quantity  to  characterize  mathematically.  Unfortunately,  the 
numerical  calculation of pointing  jitter involves the  integral of a rational  polynomial 
multiplied by a transcendental weighting  function. This form has  restricted  its evalu- 
ation  to  purely  numerical  methods,  and  complicated  its use in  practice. The present 
paper overcomes this  limitation by introducing a state-space  method for evaluating 
the  integral.  The  state-space expression is applicable to a wide range of pointing pro- 
cesses used  in  practice  (i.e., stationary processes with  arbitrary  rational  spectrum), 
and  completely avoids  numerical integration. 

1 INTRODUCTION 

This  paper is concerned with  statistical  analysis of instrument  pointing  control  performance. 
A recent  definition of RMS pointing  jitter  put  forth in  Sirlin and  San  Martin [lo1 (see also 
Appendix A of Lucke, Sirlin and  San  Martin [SI), will be reviewed which captures ,he depen- 
dence of image  smear  on  the  duration of a finite-time  exposure window. This  dependence  is 
critical to  correctly  capturing  the “fast film” benefit, which says that image  smear  in a cam- 
era  disturbed by motion having a low-pass power spectrum,  can  be  made  arbitrarily  small by 
taking  exposures of sufficiently short  duration.  The RMS pointing  jitter expression  discussed 
here nicely captures  this effect under very general  conditions.  (In  an  interesting  contrast to 
imaging  instruments, a recent  pointing  criterion for spectroscopic instruments [2] shows that 
performance  actually  improves as the exposures  become long). 

Presently,  evaluation of the RMS pointing  jitter is based on a frequency domain  integral 
involving a rational  polynomial  multiplied by a transcendental weighting  function [10][8]. 
Unfortunately,  this  form  has  restricted  its  evaluation to  purely  numerical methods,  and com- 
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plicated its use in  practice. The present paper will  overcome this  limitation by introducing 
a state-space  method for evaluating the integral. The state-space expression is applicable to 
a wide range of pointing processes used in practice  (i.e., stationary processes with  arbitrary 
rational  spectrum),  and completely avoids numerical integration. 

2 INSTRUMENT  POINTING JITTER 

2.1 Background 

Physically, a pointing process is  defined by the motion. that a camera or instrument boresight 
undergoes as a function of time.  While  this  motion  most generally forms a two-dimensional 
process (both up-down, and  left-right), we will intentionally  restrict ourselves to  the one- 
dimensional case arising  from the projection of this  motion  onto a single axis. 

I t  will be assumed that  the pointing process defined above can be suitably  approximated 
by a second-order stationary  random process (cf., Papoulis [7]). This  permits  all of the 
pointing  control definitions to  be  made in precise mathematical  terms. 

The second-order stationarity  assumption is relatively mild in the sense that  it requires 
only that  the process is stationary in its first and second moments  (as opposed to strict-sense 
stationarity which requires stationarity in all  moments)  and does not impose any specific 
form on the  shape of the underlying  probability  distributions. 

2.2 Pointing Definitions 

The per-axis  pointing  control definitions of interest  are  depicted  graphically in Figure 2.1. 
This  diagram will be discussed in  detail in this section. 

Let n(t) be a zero-mean second-order stationary  random process with power spectral 
density Sn(w) such that, 

Here, the Fourier  Transform of a signal z(t)  is denoted as X ( w )  = F{z( t )}  and is defined as, 
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Figure 2.1: Pointing  control definition diagram 

Let b be a constant  bias.  Then  the  pointing process y(t) is  defined as, 

DEFINITION 

DEFINITION 

DEFINITION 

DEFINITION 
r is defined  as, 

y(t) = n(t) + b (2.6) 

2.1 The random process y(t)  of the f o r m  (2.6) defines a pointing process. 

2.2 0: is  the pointing  process  variance. 

2.3 b is the pointing bias. rn 
2.4 The windowed-mean over  a  window of duration T ,  starting  at  time 

The windowed-mean m(r, 2’) can be thought of as ar estimate of the process mean b 
which improves as the window duration T becomes largc. This  type of estimate is used in 
many  instrument  calibration functions (e.g., frame misa!ignments, etc.) which are designed 
to  estimate b as accurately as possible from measurements on a finite observation  interval. 

The windowed-mean m(r, T )  is a random  quantity which depends on the  starting  time 
r and  the  particular realization of the random process. Its variance based on an ensemble 
average is defined next. 

DEFINITION 2.5 The windowed-mean  variance for  windows of size T ,  is defined as, 

oi (T)  = E [ (rn(~ ,T)  - (2.8) 
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Here, the  notational  dependence of 0; on 7 has been dropped since the ensemble  average  in 
(2.8) is taken  with  respect  to y which is a stationary process. 

When an image is taken over an exposure of duration T ,  it is of interest to know  how  much 
smearing  occurred  due to  the  instrument boresight “jittering  around”  during  the  exposure. 
This  jitter effect is  captured by the following definition. 
DEFINITION 2.6 The instantaneous jitter over  a  window  starting  at  time T and  ending 
at  time T + T is defined  as, 

w ,  T ,  T )  = Y ( 4  - m(T, T )  (2.9) 

The definition of instantaneous  jitter is shown pictorially in Figure 2.2. It is  important 
to  note  that  the  jitter is defined as the  instantaneous  deviation of the  pointing  process f rom 
the  windowed-mean m ( ~ ,  T )  rather  than  from  the process mean b. This  unusual definition 
turns  out  to be  critical to correctly  capturing  the effect of camera  motion on image  smearing. 
Intuitively, the reason is that  an image  taken  on a finite  interval t = [T, T+T] will be  collecting 
photons  according  to y ( t )  only on  this  interval,  and hence be centered at the windowed-mean 
rather  than  the process  mean. Accordingly, deviations  from  the windowed-mean cause  smear, 
rather  than  deviations from the process mean. 

t 

Figure 2.2: Definition of instantaneous  jitter 6( t ,  T ,  T )  

The earliest  rigorous analytical  characterization of the  instantaneous  jitter as defined 
above,  appears  in Sirlin and  San  Martin [lo], and  subsequently by Lucke, Sirlin and  San 
Martin [8]. 

As shown in  Figure 2.2 the  three  time variables t ,  T ,  T are essential to properly  describe 
6. Specifically, t is the  plotting  variable,  the window starts at t = T ,  and  ends at t = T + T .  

The overall effect of the  instantaneous  jitter  on  image  smearing is captured by its variance 
in time, 
DEFINITION 2.7 The instantaneous jitter variance is  defined us, 

(2.10) 
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The  term  “instantaneous” is used here since S;(T ,  T )  is a  random  variable which depends 
on the  starting  time 7, and  the  particular realization of the  pointing process. By taking  an 
ensemble  average of the  instantaneous  jitter variance (2.10) one obtains  the  jitter variance 
defined next. 
DEFINITION 2.8 The jitter variance is defined as, 

(2.11) 

Here, the  notational dependence of ai on r has been dropped  since  the ensemble  average  in 
(2.11) is taken  with respect to y which is a  stationary process. It is emphasized that unlike 
S:(T, T ) ,  the  quantity, ai(T) is  not a random  quantity.  Rather  it  has been averaged over the 
ensemble of possible  realizations  and is a deterministic  function of T .  

It  is convenient to define the RMS jitter which results from simply taking  the  square  root 
of (2.11), i.e., 
DEFINITION 2.9 The RMS jitter in a window of duration T is defined as, 

(2.12) 

The RMS jitter is important because it is a  statistic of the  pointing process which com- 
pletely  characterizes the control  performance as it affects  most types of imaging  instru- 
ments. As such,  it  has been adopted in  many  recent JPL/NASA  space missions for defining 
pointing  requirements  (cf., , Cassini [4], the  SIRTF telescope [6], the Space  Interferometry 
mission [7], Europa  orbiter [3]). For  example, the SIRTF mission (to replace  Hubble  in 
NASA’s Great Space  Observatory  series)  has  its level 1 pointing  requirements defined as 
ab(T = 203 secs) = .3 arcsec and aa(T = 500 secs) = .6 arcsec [6]. 

2.3 Frequency  Domain  Integrals 

Several important frequency  domain  integrals have been developed  in  Sirlin and  San  Martin 
[lo] (cf.,  also  Appendix A of [SI) for the various jitter expressions defined above.  These are 
summarized  below, 

a a  - - ’/” 27r “M Sn(W)dw (2.13) 

(2.14) 
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1 
27r “(X) 

&T) = - JW Sn(W)(1  - WT(W))dW 

where the weighting function is  given  by, 

W T ( w )  = [ w T / 2  ] s in (wT/2 )  

(2.15) 

(2.16) 

The weighting function WT(W) acts  as a low-pass filter in the windowed-mean variance 
integral (2.14), and  its complement acts like a high-pass filter in the  jitter variance integral 
(2.15). This agrees with one’s intuitive  notion that  the  jitter which affects image  smear is 
high-frequency in nature. Let S n ( w )  be a lowpass process. Since S n ( w ) ( l  - WT(W)) + 0 as 
l imT + 00, one can infer the “fast film” benefit from (2.15)’ i.e., 

,lim ai(T)  = 0 
T-tO 

(2.17) 

This says that  the  instrument pointing jitter can be made  arbitrarily small by taking expo- 
sures of sufficiently short  duration T .  

2.4 Conservation of Variance 

By  inspection, it is  seen that  the frequency integral (2.13) can be written  as  the  sum of the 
integrals (2.14) and (2.15). This gives the following conservation-of-variance formula, 

(2.18) 

This  formula says that  the process variance a: is a conserved quantity. Specifically, in  any 
window of duration T ,  the pointing process variance ai divides itself (generally  unequally) 
between the windowed-mean variance a i ( T )  and  the  jitter variance ui(T).  Furthermore,  the 
division is such that most of the process variability goes into  the windowed-mean for short 
time exposures, and  into  the  jitter variance for long exposures,  i.e., 

(2.19) 

- T+m 
- lim O;(T) (2.20) 

Because of the relation (2.20), the process variance a: is sometimes referred to as the long- 
term jitter, or steady-state  jitter. 



3 MAIN RESULT 

The  main  result is  presented which introduces  a  state-space  method for evaluating  the  integral 
(2.14) for the windowed-mean variance ok(T),  and  the  integral (2.15) for the  jitter variance 
oi(T) ,  without requiring  numerical integration. For this  presentation,  the  pointing bias  in 
(2.6) is assumed to be zero (i.e., b = 0) without loss of generality. 
THEOREM 3.1 Let  the  stationary process y(t)  be generated b y  the  following  state-space 
model  driven by white  noise, 

X = A X + W  ( 3 4  

y = c x  (3.2) 

Here, A E 72””” is  an  asymptotically  stable  matrix  (i.e., all eigenvalues  have  strictly  negative 
real parts), C E Rlxn is  the  output  matrix,  and w E Rnx’ is a continuous-time  zero-mean 
white  noise  having  statistics, 

E (w( t ) ]  = 0 (3.3) 

E[w(t)w(t  + T ) ~ ]  = S(7)Q (3.4) 
Here  the  covariance Q E Rnx” can be either  a  positive  definite  or  positive  semi-definite 
symmetric  matrix. 

Then  assuming  the  system (3.1)(3.2) has reached steady-state,  the  windowed-mean  vari- 
ance ok(T), and  the  jitter  variance oi(T) of y(t) on  the  interval t E [T, 7+T]  can be calculated 
as, 

where, 
0,” = CP,CT 

3cT = S, S, eATdrds 
T s  

and P, is  found b y  solving  the  Lyapunov  equation, 

Furthermore,  the  quantity 3 c ~  can be evaluated  using  any of the  following  expressions  without 
requiring  numerical  integration, 

Method 1: Matrix Exponential 

3cT = A - ~  (eAT - I - AT) (3.10) 
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Method 2:  Inverse  Laplace  Transform 

(3.11) 

Method 3: Augmented Matrix  Exponential 

HT is  the  upper  right n x n submatrix of the  matrix  exponential, 

(3.12) 

where X E R3nx3n is  defined as (denoting Z as the n x n identity matrix, and 0 as an n x n 
zero matrix), 

0 Z  0 
(3.13) 

rn 

3.1 Discussion 

The  main usefulness of the  state-space formulation in Theorem 3.1 is that  it replaces the 
weighted frequency  integrals (2.14)  (2.15) in the expressions for windowed-mean  variance and 
jitter variance, with  the unweighted time integral of a matrix exponential, i.e., 3tT in (3.8). 
Aside from  eliminating the transcendental weighting function WT in (2.16) from the prob- 
lem, the state-space  formulation allows one to take  advantage of special  results  available for 
integrating expressions involving the  matrix exponential. Specifically, Theorem 3.1 provides 
three  methods for evaluating X T  without numerical integration. 

REMARK 3.1 A Gaussian assumption  has  not been required on the noise w in (3.1)(3.2). 
Accordingly, the results of Theorem 3.1 hold for vhite noise with arbitrary  probability dis- 
tributions. rn 

REMARK  3.2 For some  state-space  systems of the form (3.1)(3.2) the  matrix  exponential 
expression (3.10) or inverse Laplace transform expression (3.11) can be  computed  in closed- 
form. For these  systems  the  jitter formula can be computed in closed-form. It will be seen 
in the next  section that several useful results  can be  obtained  in  this  fashion. 

REMARK 3.3 Often it is of interest to evaluate jitter for various sized windows T.  A 
useful simplification  occurs if the desired T k  lie on a uniformly spaced time grid T k  = kTo 
since each matrix  exponential in Method 1 can be calculated  simply as eATk = (eATo)k. 
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4 APPLICATIONS 

The  state-space formulas  developed  in  Theorem 3.1 are applied to computing  the  jitter first 
for a first-order  Gauss-Markov  process,  and  second, to a  typical  spacecraft  pointing  process. 

.. 4.1 First-Order Pointing Process 

This first-order  process is very simple, but can  be used to  approximate  the behaviour of many 
physical  processes and phenomena [ 5 ] .  Its  state-space model is given as, 

x = -ax -k bw ( 4 4  

y = x  

E[w(t)w(t  + T ) ]  = q - S ( T )  

The power spectrum is computed as, 

where the coloring  filter is defined as, 

b 
j w + a  

F ( j w )  = - 

Applying the results of Theorem 3.1 with the choices, one has A = -a, C = 1, Q = q,  gives 
the following results. 

2 4  - a, - - 
2a 

The  results  are  plotted in  Figure 4.1 and  tabulated  in  Table 4.1 for visualization. To aid 
the  interpretation, it is  pointed  out that  the autocorrelation of the process  is given by, 

R(T) = E[z(t)z(t + r)]  = oa - e 2 -a7 
(4.9) 

i.e., the process  is  strongly  correlated over its correlation length of time rc = l /u.  
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Normalized  Variance of Windowed  Mean  and  Jitter 
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Figure 4.1: Normalized  Variance of Windowed Mean ak(T)/ai  and  Jitter ai(T)/ai  

First-Order  Pointing  Process  Variances 
Window Time Mean Variance Jitter Variance 
T 0; (T )  4 (T)  

Table 4.1: Jitter variance and windowed-mean variance for first-order  pointing  process 

11 



It is seen from  Table 4.1 that  the  jitter variance  exactly  equals the mean variance when 
the horizon length T equals 2.5569 correlation  lengths,  i.e., T = 2.5569 - T ~ .  For windows T 
which are  short  compared  to 2.5569 - rc the windowed-mean  becomes the  dominant  source of 
variability. For example, it increases to 90% of the  total variance ai when T is approximately 
a third of a correlation  length.  In  contrast, for windows which are long  compared to 2.5569.7, 
the  jitter  dominates,  increasing  to a value of 90% at approximately 19 correlation  lengths. 

4.2 Typical Spacecraft Pointing Process 

In  this  section,  an  analytic expression will be  derived for the  jitter variance  associated  with a 
three-axis  controlled  spacecraft  using noisy gyro  and  star  tracker  measurements.  This  analysis 
characterizes  control  errors  due to noisy sensors only. Additional  errors  due to process  noise, 
and/or  environmental  torques  are assumed to negligibly small,  or to  be  budgeted  separately 
elsewhere. It is also  assumed that  the spacecraft is flying an  attitude  estimator comprised of 
three decoupled single-axis observers. Many spacecraft  attitude  estimators  are of this  form 
or  can  be  reasonably  approximated as such. 

The single-axis estimation  error  associated  with using a Luenberger  observer  driven by 
a star  tracker  angle  measurement  and a gyro-based rate  measurement,  propagates according 
to  the following state-space  model [l], 

e=A,e+w,  (4.10) 

e,  = C,e (4.11) 

= [ -IC2 0 ] -k1 1 
; C,=[  A 1 0 3 ;  K =  (4.12) 

(4.13) 

Here, T- denotes  the  star  tracker noise covariance. The  gyro noise covariances q1 and q2 are 
denoted as the angle  random walk (AR'iV) and bias  instability, respectively, and  the  state 's 
given as x = [e, blT where 8 is the  angular  position  (to  be  estimated),  and b represents ;he 
gyro  bias. 

The  characteristic  polynomial of the observer with  state-space  matrix A, in (4.12) can  be 

det ( S I  - A,) = s2 + kls + k2 (4.14) 
caiculated as, 

The observer  poles are  calculated as roots of (4.14), to give, 

(4.15) 
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-kl - d k f  - 4k2 
P 2  = 2 

(4.16) 

Applying  the  results of Theorem 3.1 with the matrices A,, C,, Q, above, gives the following 
results, 

0: = Pll  (4.17) 

(4.18) 

(4.19) 

ui(T) = u," - o$(T) (4.20) 

where the  steady-state covariances are given as, 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

The above  formulas are  potentially very useful for analyzing  spacecraft  pointing system 
performance in support of a broad  range of imaging  type  instruments. 

5 CONCLUSIONS 

The RMS pointing  jitter criterion  has been reviewed as an  important  statistic of any sta- 
tionary  random  pointing process which completely characterizes the control  performance as 
it affects most  types of imaging  instruments. As such it has been adopted by several recent 
JPL/NASA missions for specifying basic mission pointing  requirements. The  main result of 
this  paper  is  Theorem  3.1 which gives a state-space  method for evaluating the  instrument 
pointing  jitter  without numerical integration. It is hoped that  this result will simplify the 
application of the RMS jitter criterion  in  practice, and  aid  its use and  adoption. 
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A Appendix A: Proof of  Theorem 3.1 

Assume that at time t = r the process x has  already reached steady-state, so that  its 
covariance is calculated by solving the Lyapunov equation, 

where, 

Note that a solution for P, always exists since the  matrix A is asymptotically  stable [5]. The 
formula  (3.7) for a: (i.e., the  steady-state covariance of y) follows directly  from (A.l)(A.2) 
and  the  output  equation (3.2). 

Assume that process y is augmented by a single integrator at its  output,  to give, 

5 = [ 5 ] ;  A = [ ,  A 0  0 ]  

; Q = Cov[G] = [ o ]  
- a  Q O  

It will be  assumed that  the  integrator is initialized to zero at time t = r so that  the  state 
z ( r  + T )  is the  time  integral of y from t = r to t = r + T ,  i.e., 

It is  emphasized that because  the model (3.1)(3.2) has reached steady-state by assumption, 
the signal y(t) being  integrated is a realization of a stationary  random process. 

This  construction of z simplifies the  calculation of the  statistic ak(T)  through  the rela- 
tions, 

z ( r  + T )  
T 

rn(r,T) = 

where, 
P,,(r + T )  A E[z(T + T)2]  

i.e., it is only  left to characterize  the covariance P,, of the  state z.  To this  end,  the  variance 
of the  augmented  system (A.3) propagates from time t = r to  time t = r + T according to  
the following Lyapunov  equation, 

P(t )  = D ( t )  + P(t)A + Q (A.lO) 
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where, 

( A . l l )  

(A.12) 

The  initial  condition p ( r )  arises  from the  fact  that  the  subsystem (3.1)(3.2) is  already  in 
steady-state at time t = r with  covariance Pw, and  the  assumption that  the  integrator is 
initialized as z ( r )  = 0 with  probability  one, so that Pzz(r) = 0 and Pz,(r) = 0. 

The differential  equation (A.lO) can  be written equivalently  in terms of the  partitioned 
quantities  as follows, 

(A.13) 

(A.14) 

Using ( A . l ) ,  one  can  trivially solve (A.13) with  initial  condition PZz(r) = P, to give, 

P,,(t) = P, for all t E [r, r + T ]  (A.16) 

i.e., the original  system (3.1)(3.2) (which starts in steady-state), remains  in steady-state 
throughout  the  entire  interval.  Substituting (A.16) into (A.14) gives, 

P Z z  = AP,, + P,CT (A.17) 

Equation (A.17) can  be recognized as  a system of linear  differential  equations  with constant 
input,  and  having a zero initial condition PZz(7) = 0. As such, its  solution at any  time t can 
be  expressed  in terms of the  matrix  exponential, 

(A.18) 

where use has been nade  of the change of variable T = t - to simplify the  integral.  Substi- 
tuting (A.18) into (A.15) and  integrating  with respect to  time gives, 

Pz,(r + T )  = 2 c  eA'drdt' PwCT = 2C [lT LseArdrds] PwCT (A.19) I 
where use has been made of the change of variable s = t' - T to simplify the integral. 
Substituting (A.19) into (A.8) gives, 

(A.20) 
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which gives the desired  expressions (3.5)(3.8). 

The expression (3.6) is simply a rearrangement of the conservation of variance  formula 
(2.18). 

Method 3 for  calculating 31T from (3.12)(3.13) follows as  a special  case of Theorem 1 in 
Van Loan [ll]. By expanding eXT in (3.12) into a power series one can extract  the series  for 
HT as  the  upper right n x n submatrix  to give, 

T2 T 3  T4  
2! 3! 4! 

H ~ = - I + - A + - - A ~ +  ... (A.21) 

Multiplying  both sides of (A.21) on the left by A2 and  adding I + AT to  both sides gives, 

T2  T3 T4 
A 2 H T + I + A T = I + A T + - A 2 + - A 3 + - - A 4 +  . . . .- - e AT (A.22) 

2! 3! 4! 

where this  infinite series  has been recognized as  a power series  representation of eAT. Solving 
for HT in (A.22) gives 

HT = A-2 (eAT - I - AT) (A.23) 

which is  Method 1 (3.10) as  desired.  Note that A is always  invertible  since it is an asymp- 
totically  stable  matrix  and by necessity  has  no zero eigenvalues. 

Consider the well-known Laplace  transform  expression for the  matrix  exponential,  i.e., 

L { e A T }  = ( S I  -  AT)-^ (A.24) 

Method 2 (3.11) follows  by multiplying  the Laplace  transform in (A.24) by l/s2 to correspond 
to a double  integration in time, i.e., 

L { l T  I '  eArdrds'} = "(SI  - AT)-' 
1 

S2 
(A.25) 
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